

TRT800A-OLED Mode-S

Transponder

P/N 800ATC-A-(2xx)-(3xx)

Bedienung und Einbau

(Dokument-Nr. 03.2114.010.71d)

Bedienung und Einbau

Änderungsverzeichnis

Revision	Datum	Änderungsbeschreibung
1.00	04.02.2013	Erstausgabe
2.00	22.01.2014	Umfirmierung f.u.n.k.e. AVIONICS GmbH Neuer EM800-Kabelplan in Kap3.7.3 eingefügt
2.10	15.06.2015	Neuer EM800-Kabelplan in Kap3.7.3 eingefügt
2.20	12.04.2016	Korrekturen-Info ADS-B in Kap4.4.3 eingefügt
3.00	03.11.2020	Erweiterte Einstellmöglichkeiten GPS Protokoll und Fernbedienung.
3.00	03.11.2020	Accuracy und Integrity Einstellungsmöglich- keiten ergänzt.
4.00	27.04.2021	Option TM350 Schnittstelle hinzugefügt. Neuer Kabelplan TRT800EMDS hinzugefügt.

Liste der Service-Bulletins (SB)

Service-Bulletins sind in das Handbuch einzufügen und in der Tabelle einzutragen.

SB Nummer	Rev. Nr.	Ausgabe Datum	Einfüge Datum	Name
SB TRT800-A-H-1	1.04	17.10.2008	Erstausgabe	DO
SB TRT800-A-H-1/2018	1.00	10.10.2018	Rev3.00	QM

Inhaltsverzeichnis

1	ALLO	GEMEINES	5
•	1.1	Symbole	
	1.2	Abkürzungen	
	1.3	Kundenservice	
	1.4	Geräteeigenschaften	
2		ENUNG	
	2.1	Bedienelemente im Überblick	
	2.2	Ein/Ausschalten	
	2.3	Anzeige	11
	2.4	Anzeige - Helligkeit	
	2.5	Flight-ID (FID)	
		2.5.1 Anzeige der aktuellen Flight -ID	12
		2.5.2 Flight-ID (FID) ändern	13
	2.6	Einstellung des Transponder-Modes	13
	2.7	Squawk-Einstellung	14
	2.8	VFR – Squawk	14
	2.9	ID - Spezielle Positions-Identifizierung (SPI): "Squawk Iden	t"15
3	EINB	AU	16
	3.1	Hinweise	16
	3.2	Fernmeldeangaben	16
	3.3	Lieferumfang	16
	3.4	Auspacken und Kontrolle des Gerätes	17
	3.5	Montage	17
	3.6	Geräteanschluss	18
		3.6.1 Gerätestecker	18
		3.6.2 Anschluss für statischen Druck	19
	3.7	Verkabelung	19
		3.7.1 Leiterquerschnitte	19
		3.7.2 Steckerbelegung	20
		3.7.3 Kabelplan External Memory EM800	21
	3.8	Antenne	25
		3.8.1 Antennenauswahl	25
		3.8.2 Einbauempfehlungen	25

Bedienung und Einbau

		3.8.3	Antennenleitung	26
	3.9	Überp	orüfung nach dem Einbau	26
	3.10		iebnahme	
	3.11	Zubeł	nör	27
	3.12	Zeich	nungen	28
		3.12.1	Geräteabmessungen	28
		3.12.2	2 Einbauhinweise	29
4	EINS	TELLU	INGEN	30
	4.1	Überb	olick	30
	4.2	Übers	sicht der Transponder Einstellungen anzeigen	30
	4.3	Besch	nreibung der Grundeinstellungen	32
		4.3.1	ICAO 24-Bit Aircraft Address (AA)	32
			Flugzeugkategorien (AC)	
			Flight-ID (FID)	
			Geschwindigkeitskategorie (RI)	
	4.4		nreibung der optionalen Einstellungen	
			Option: Ground-Switch	
		4.4.2	Data Port Einstellungen	36
		4.4.3	Option: Höhenkalibrierung	41
	4.5	Einste	ellungen durchführen	42
		4.5.1	Konfigurationsmenüs	42
		4.5.2	Struktur der Konfigurationsdaten	43
		4.5.3	Auswahl/Löschen von Konfigurationsdaten	43
			Konfiguration durchführen	
			Einstellung der optionalen Höhenkalibrierung	
5	ANH	ANG		50
	5.1	Techr	nische Daten	50
	5.2	Umwe	eltbedingungen	52
	5.3		sen	
		5.3.1	Antrag für Erteilung der 24-bit Adresse	53
			Antrag auf Frequenzzuteilung	

1 ALLGEMEINES

Dieses Handbuch enthält Informationen über die physikalischen, mechanischen und elektrischen Eigenschaften und die Beschreibung von Einbau und Bedienung des Mode S Transponders TRT800A.

1.1 Symbole

Hinweise, deren Nichtbeachtung Personenschäden durch elektrische Strahlung und Entzündung von brennbarem Material verursachen kann.

Hinweise, deren Nichtbeachtung zu Schäden am Gerät oder an anderen Teilen der Ausrüstung führen kann bzw. die korrekte Funktionalität des Gerätes beeinflusst.

Information

1.2 Abkürzungen

Abk.	Bezeichnung	Definition
FID	Flight ID	Flugplannummer oder falls nicht zugeteilt Kennzeichen des Luftfahrzeuges
SPI	Special Position Identification	Aktivierung nach Aufforderung des Fluglotsen "Squawk Ident", sendet für 18 Sekunden SPI Puls zur Markierung auf dem Radarbildschirm
AA	Aircraft Address	Dem Transponder/Luftfahrzeug zugewiesene ICAO 24 bit Adresse
AC	Aircraft Category	Luftfahrzeugzuordnung zu definierten Kategorien
RI	Reply Information	Maximalgeschwindigkeit des Luftfahrzeugtyps

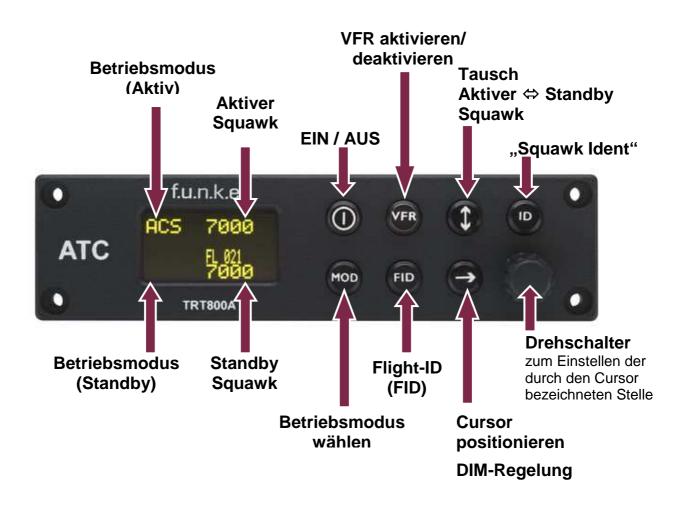
1.3 Kundenservice

Für die schnellstmögliche Bearbeitung von Rücksendungen folgen Sie bitte den Instruktionen des Eingabeformulars für Reklamationen und Rücksendungen im **Service**-Bereich des f.u.n.k.e. AVIONICS GmbH Web-Portals www.funkeavionics.de.

Vorschläge zur Verbesserung unserer Handbücher sind erwünscht. Kontakt: service@funkeavionics.de.

Informationen zu Softwareupdates sind bei f.u.n.k.e. AVIONICS GmbH erhältlich.

1.4 Geräteeigenschaften


Um den Transponder im Mode S betreiben zu können, muss die "ICAO 24-Bit Aircraft Addresse" für das betreffende Luftfahrzeug bei den zuständigen Luftfahrtbehörden (rechtzeitig) beantragt und über den Transponder in den externen Speicher (im Stecker TRT800EMxx integriert) eingegeben werden (siehe Kapitel 4.3.1 und 4.5.4).

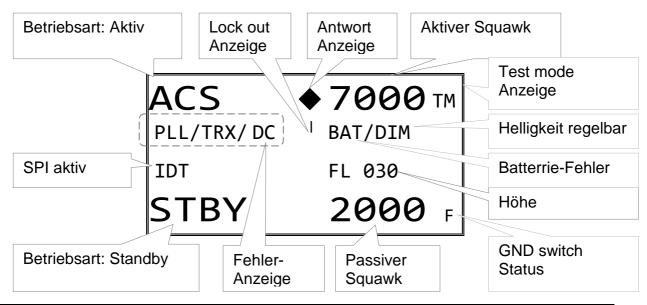
- Class 1 Level 2es Non-Diversity Mode-S-Transponder für Bodenstationsabfragen auf 1030 MHz und Beantwortung auf 1090 MHz
- Beantwortung von Abfragen der (Sekundär-) Bodenradaranlagen
 - Mode-A-Antworten mit dem Squawk (einem von 4096 möglichen Codes; z.B. der Flugplannummer, einem durch die Fluglotsen zugewiesenen Squawk oder dem VFR Squawk 7000)
 - o Mode-C-Antworten mit kodierter Flughöhe
 - o Mode-S-Antworten mit Aircraft Addresse und Flughöhe
 - Extended Squitter mit zusätzlicher Angabe von Position und Geschwindigkeit
- IDENT-Funktion zur Aktivierung des "Special Position Identification"-Pulses (SPI) für 18 Sekunden, nach Aufforderung "Squawk Ident" durch die Flugsicherung
- maximale Flughöhe 35 000 ft; maximale Geschwindigkeit 250 kt
- Anzeige aller notwendigen Informationen wie Squawk-Code, Betriebsart, Flughöhe usw.
- hochgenauer, temperaturkompensierter piezo-resistiver Drucksensor
- RS232-Schnittstellen für Anschluss ausgewählter GPS-Empfänger, um ADS-B zu ermöglichen oder für Fernbedienung
- acht Einträge für AA, AC, FID, Ground Switch und Schnittstelleneinstellung im Stecker TRT800EMxx speicherbar

2 BEDIENUNG

2.1 Bedienelemente im Überblick


0	EIN/AUS	>	Anschalten ca. 0,5 s drücken Ausschalten ca. 3 s drücken		
VFR	VFR	•	VFR Squawk aktivieren/deaktivieren (kurz drücken) aktiven Squawk als VFR/VFRW-Squawk speichern (3 s drücken) (→2.8)		
	TAUSCH	>	aktiven und Standby-Squawk tauschen funktioniert als Cursor-Zurück-Taste bei Eingabe von Werten und auch zur Rückwärtsnavigation im Konfigurationsmenu (→4.5.4)		
ID	IDENT	•	"Squawk Ident", sendet Ident-Markierung (SPI) für 18 s (im Normalbetrieb) (→ 2.9)		
МПО	MODE	>	Transponder-Mode ACS, A-S oder Standby wählen (→2.6)		
	CURSOR	>	Cursor positionieren Aktivierung zur DIM-Regelung (→2.4)		
FID	Flight-ID	>	Einstellung der Flight-ID (im Standby-Betrieb, 5 s drücken)		
	Drehknopf	>	Werte an aktueller Cursor-Position eingeben, Optionen auswählen; Standby Squawk ändern (→2.7)		

2.2 Ein/Ausschalten


Ausschalten: ca. 3 s drücken

Nach dem Einschalten erscheint eine Anzeige mit (Beispiel):

2.3 Anzeige

Anzeige	Bedeutung	Bemerkung
7000	aktiver Squawk	
2000	standby-Squawk	Kann durch mit aktivem Squawk getauscht werden
FL030 FLerr	Flughöhe ungültige Höhenmessung	Flughöhe (in 100 ft-Schritten) außerhalb -1000 35 000 ft, C Mode wird deaktiviert
ACS	Anzeige der Betriebsart (STBY, A-S, ACS, AC, A)	Modi siehe Kap. 0
IDT	Sendet Ident-Markierung (SPI)	ID ("Squawk Ident") wurde gedrückt – aktiv für 18 s
•	Transponder sendet: Antworten auf Radarabfragen	Erscheint nicht bei Squitter Aussendung
I	Transponder ist von einer Bodenstation erfasst und wird nun von dieser adressiert abgefragt	Lock Information (angezeigt unterhalb des Raute-Symbols)
F	in-flight	Ground-Switch-Info
G	on-ground	(falls vorhanden)

Anzeige	Bedeutung	Bemerkung		
Fehlermeldungen				
PLL	PLL Fehler	interner Fehler		
TRX	Fehler beim Senden			
DC	interne Spannung zu niedrig	interner Fehler		
FPG	FPGA-Fehler	interner Fehler		
BAT	Batteriespannung zu niedrig	evtl. Batterie/Generator defekt		

2.4 Anzeige - Helligkeit

Im aktiven Betrieb (nicht Standby)

- Taste 2 Sek. drücken

Die Anzeige zeigt "DIM" → Helligkeit mit dem Drehknopf einstellen

zurück zum Normalbetrieb:

kurz drücken oder 5 Sek. warten.

2.5 Flight-ID (FID)

Die FID ist eine im Mode-S Betrieb übertragene Kennung. Diese kann z.B. bei der Verwendung von Flugplänen zukünftig für jeden Flug zugewiesen werden. Bekommt man keine FID zugeteilt (Normalfall), ist hier das <u>Luftfahrzeug-Kennzeichen</u> ohne Bindestrich oder Leerzeichen einzutragen. Sie ist nicht zu verwechseln mit der 24-bit Aircraft Address.

2.5.1 Anzeige der aktuellen Flight -ID

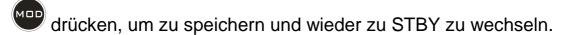
drücken und halten. Die aktuelle FID wird im Display angezeigt Anzeige:

2.5.2 Flight-ID (FID) ändern

(wiederholt) drücken bis "STBY" erscheint

drücken und halten. Bei Anzeige "CHANGE FID" 📁 loslassen

CHANGE FID


ABCDEFGH

Flight-Id mit Cursortaste und Drehknopf eingeben

FID <u>linksbündig</u>, ohne <u>Leerzeichen oder Striche(!)</u> eingeben, also z.B. 12345621DEFAV für das Kennzeichen D-EFAV. Die letzten Stellen sind mit Leerzeichen ("blank") aufzufüllen

Hinweise zur Einstellung der 24-bit Adresse (AA) und der Flugzeugkategorie (AC) finden sich in Kapitel 4.5.4.

2.6 Einstellung des Transponder-Modes

(wiederholt) drücken zur Auswahl eines der folgenden Modes:

- STBY → "Standby" Transponder antwortet nicht auf Abfragen und sendet keine Squitter oder ADS-B Nachrichten.
- **ACS** → "Mode A+C+S" Normalbetrieb; Transponder antwortet auf alle Anfragen.
- A S → "Mode A+S, kein C" Höhe wird nicht übertragen (weder bei Mode C noch bei Mode S Anfragen). Alle anderen Mode S Daten sowie Mode A Antworten werden übertragen.

Wurde keine 24-bit Adresse (AA) definiert oder als "000000" eingegeben arbeitet der Transponder als reines Mode A/C Gerät, in diesem Falle sind außer Standby folgende Modi möglich:

- A C → "Mode A+C"
 Transponder antwortet nur auf Mode A und Mode-C Anfragen.
- A - → "Mode A"
 Transponder antwortet nur auf Mode A Anfragen.

Im Betriebszustand STBY (Standby) erfolgen keinerlei Aussendungen des Transponders! Daher ist der Transponder bei dieser Betriebsart weder für die Flugsicherung noch für die Kollisionswarnsysteme anderer Flugzeuge sichtbar.

Verwenden Sie den STBY-Modus daher <u>niemals während</u> <u>des Fluges</u>, es sei denn, Sie werden durch die Flugsicherung dazu aufgefordert. Denken Sie auf jeden Fall bei jedem Start daran, den Transponder in einen <u>aktiven</u> Modus zu schalten!

2.7 Squawk-Einstellung

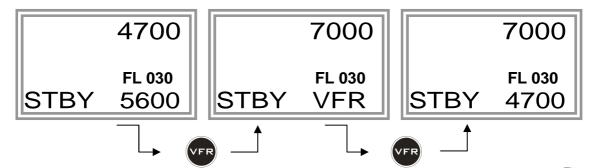
Der aktive Squawk wird im Display oben dargestellt; unten wird der Standby-Squawk dargestellt.

Einstellen des Standby-Squawks:

- setzt den Cursor ("^"), mit dem Drehknopf werden die Ziffern eingestellt (Standby-Squawk, unterste Zeile)
- tauscht Standby- und aktiven Squawk

2.8 VFR – Squawk

Der Transponder unterstützt die Verwendung einer vom Benutzer einstellbaren Squawk Kombination für den VFR-Flug (Werkseinstellung: 7000):


• VFR-Squawk aktivieren: drücken ("VFR" wird angezeigt), hierbei wird der zuvor aktive Squawk zum Standby-Squawk, ist allerdings nicht sichtbar, da dieser von der VFR Anzeige überdeckt wird.

• Durch VFR überdeckten Standby-Squawk wieder anzeigen:

oder oder drücken bzw. Drehknopf betätigen (der VFR-Squawk bleibt dabei weiterhin aktiv!)

Beispiel:

- Nun kann der Standby-Squawk wie üblich mit dem Drehknopf verändert, und mit aktiviert werden.
- Zum Abspeichern des momentan aktiven Squawk als neuen VFR-Squawk (anstelle der Werkseinstellung 7000):
 - gedrückt halten bis "S" angezeigt wird (ca. 3 s); nach dem Loslassen wird "VFR" angezeigt

2.9 ID - Spezielle Positions-Identifizierung (SPI): "Squawk Ident"

Durch Drücken von wird bei jeder Antwort innerhalb der nächsten 18 Sekunden zusätzlich der SPI übertragen, der auf dem Radarbildschirm des Fluglotsen eine auffällige Markierung des Radarsymbols bewirkt. Der "Spezielle Positions-Identifikations-Impuls" ist auf die Anforderung des Fluglotsen "Squawk Ident" zu aktivieren.

3 EINBAU

3.1 Hinweise

Die folgenden Angaben müssen beim Einbau berücksichtigt werden. Der beauftragte luftfahrttechnische Betrieb kann die Verdrahtung durchführen. Verdrahtungspläne siehe *Kapitel 3.7* Verkabelung. Transponder, AC-Adressadapter, Kabel und Antennen müssen gemäß "FAA AC-143.13-2A Acceptable Methods, Techniques and Practices – Aircraft Alterations" und den entsprechenden Herstellerangaben eingebaut werden.

3.2 Fernmeldeangaben

Hersteller:	f.u.n.k.e. AVIONICS GmbH
Typenbezeichnung:	TRT800A
EASA Nummer:	EASA.21O.268
Sendeleistung:	126 W
Frequenz:	1090 MHz
Emission Designator:	12M0M1D

3.3 Lieferumfang

Artikelnummer	Beschreibung
TRT800A	Transponder TRT800A
TRT800EMDS	External Memory (Aircraft-Address-Adapter) mit Kabeln
MB800A2	Mounting-Block-Set (für Montage, wenn KT76- Rahmen entfernt wurde), 4x Schraube M4x20 zink
	1x Mounting-Block KT76 links 1x Mounting-Block KT76 rechts
56S101A4	TNC Antennenstecker
03.2114.010.71d	Handbuch "Bedienung und Einbau"
	EASA Form 1

Dokument-Nr.: 03.2114.010.71d / Revision: 4.00

3.4 Auspacken und Kontrolle des Gerätes

Packen Sie das Gerät vorsichtig aus. Transportschäden müssen umgehend dem Transporteur angezeigt werden. Das Verpackungsmaterial muss für Beweiszwecke vorhanden sein.

Für Lagerung oder Rücksendung sollte die Originalverpackung verwendet werden.

3.5 Montage

- In Absprache mit einem luftfahrttechnischen Betrieb werden Einbauort und Art des Einbaus festgelegt. Ein luftfahrttechnischer Betrieb kann alle Kabel einbauen. Kabelsätze sind bei f.u.n.k.e. AVIONICS GmbH erhältlich.
- Der Einbau in der Nähe von Wärmequellen ist zu vermeiden.
 Ausreichende Luftzirkulation ist erforderlich.
- Für die Installation von Kabeln und Verbindungssteckern muss genügend Raum vorhanden sein.
- Knicke und der Verlauf von Kabeln in der Nähe von Steuerseilen sind zu vermeiden.
- Die Kabel müssen so lang sein, dass Stecker bei Reparaturen zugänglich sind.
- Der Kabelbaum, der zum Gerätestecker führt, muss so verlegt werden, dass daran kein Kondenswasser in den Stecker laufen kann.
- Montagehinweise und -zeichnung (siehe Kapitel 3.12).

3.6 Geräteanschluss

3.6.1 Gerätestecker

Der 15-polige Gerätestecker (D-SUB) enthält alle elektrischen Verbindungen mit Ausnahme des Antennenanschlusses.

Für den Geräteanschluss darf nur ein External Memory (AC-Address-Adapter) TRT800EMxx verwendet werden, weil dieser Bestandteil des zugelassenen Geräts ist und darin ein Speicher für die "ICAO 24-Bit Aircraft-Address" enthalten ist.

Die (+UB)-Leitung muss mit einem Überlastschutz (2 Amp.) abgesichert werden!

3.6.1.1 Suppression-Leitung

Andere Geräte an Bord können im gleichen Frequenzband arbeiten wie der Transponder, z. B. DME.

Ist ein solches Gerät eingebaut, muss eine Suppression-Leitung installiert werden, um die Empfangsteile der verschiedenen Geräte vor den abgestrahlten Sendeleistungen der jeweiligen anderen Geräte zu schützen (Mutual Suppression = Gegenseitige Unterdrückung). Dabei wird ein zu den jeweiligen Sendesignalen synchroner Puls erzeugt, der für die Dauer der eigenen Übertragung den Empfang bei den anderen Geräten unterdrückt.

Zur Aktivierung dieser Funktion muss das Signal "SUPP_I/O" mit den Suppression-Leitungen der anderen Geräte verbunden werden.

3.6.1.2Ground Switch

Ist ein externer Ground-Switch angeschlossen (und im Setup aktiviert), kann der Transponder zwischen On-Ground- und In-Flight-Zustand unterscheiden. Im On-Ground-Zustand schaltet der Transponder automatisch in den Ground-Modus.

Zur Aktivierung dieser Funktion muss das Signal "FLY-GND" mit einem externen Schalter verbunden werden, welcher bei belastetem Fahrwerk das Signal mit "GND" verbindet, andernfalls offen bleibt.

Ferner muss die Option im Setup aktiviert werden. Dies ist im Abschnitt 4.5.4 beschrieben.

3.6.2 Anschluss für statischen Druck

Der Anschluss für den statischen Druck an der Rückseite des Gerätes wird mit einem 5-mm Silikon-Schlauch mit der entsprechenden Static-Leitung des Luftfahrzeuges verbunden. Der Schlauch muss fixiert und gesichert werden, ohne ihn zu quetschen.

3.7 Verkabelung

3.7.1 Leiterquerschnitte

Versorgungsleitungen (Power, GND): AWG20 (0,62 mm²)

Signalleitungen: AWG22 (0,38 mm²)

Die verwendeten Leitungen müssen für den Einbau in Luftfahrzeuge zugelassen sein.

20

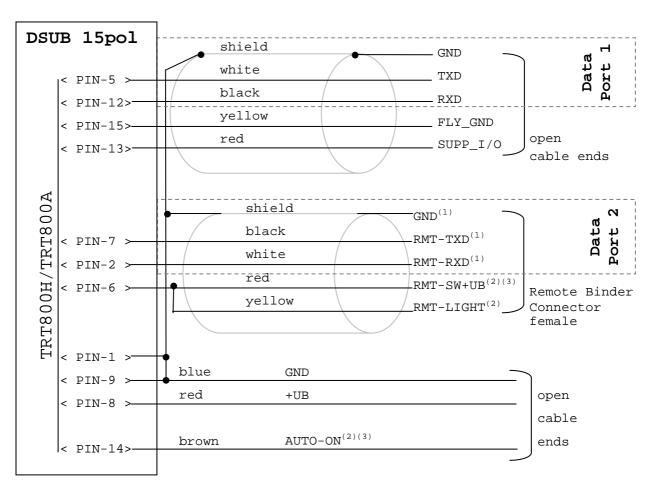
3.7.2 Steckerbelegung

Der Transponder darf nur in Verbindung mit einem External-Memory-Adressadapter (TRT800EMxx) betrieben werden

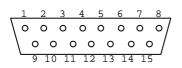
Pin	Verwendung	Bem.	s	Stecker Typ ⁽²⁾ TRT800-		
			EM	EMSS	EMRS	EMDS
1	GND	-	•	•	•	•
2	Schnittstelle Fernbedienung ⁽¹⁾	Eingang / Port 2			•	•
3	EEPROM Signal	TRT800EMxx intern				
4	EEPROM Signal	TRT800EMxx intern				
5	TX RS-232	Ausgang / Port 1	0	•	•	•
6	reserviert	nicht verbinden				
7	Schnittstelle Fernbedienung ⁽¹⁾	Ausgang / Port 2			•	•
8	+UB Versorgungsspannung	Eingang	•	•	•	•
9	GND	-	•	•	•	•
10	EEPROM VCC	TRT800EMxx intern				
11	EEPROM GND	TRT800EMxx intern				
12	RX RS-232	Eingang / Port 1	0	•	•	•
13	Suppression	Ein-/Ausgang	0	•	•	•
14	reserviert	nicht verbinden				
15	Fly-GND Switch ⁽³⁾	Eingang ⁽³⁾	0	•	•	•

^{• =} im Stecker vorhanden und nach außen geführt ○ = im Stecker vorhanden, nicht nach außen geführt /= interne Verbindung zum Gerät

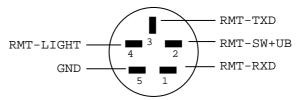
(1)	Interface Remote	Darf nur in Verbindung mit f.u.n.k.e. AVIONICS Geräten benutzt werden, die für diesen Ausgang ausgelegt sind.
(2)	External-Memory- Adapter / TRT800EM & TRT800EMSS	EM-Adapterversionen welche keine vollständige Schnittstellenbelegung anbieten (siehe Spalte oben)
(3)	Ground Switch/ FLY-GND	Falls ein Ground-Switch angeschlossen ist, muss dieser Anschluss im "On-Ground"-Zustand mit "GND" verbunden werden, andernfalls bleibt er offen.


Dokument-Nr.: 03.2114.010.71d / Revision: 4.00

3.7.3 Kabelplan External Memory EM800


3.7.3.1 Kabelplan TRT800EMRS (ältere Version mit Interface-Remote)

bis S/N 90932013

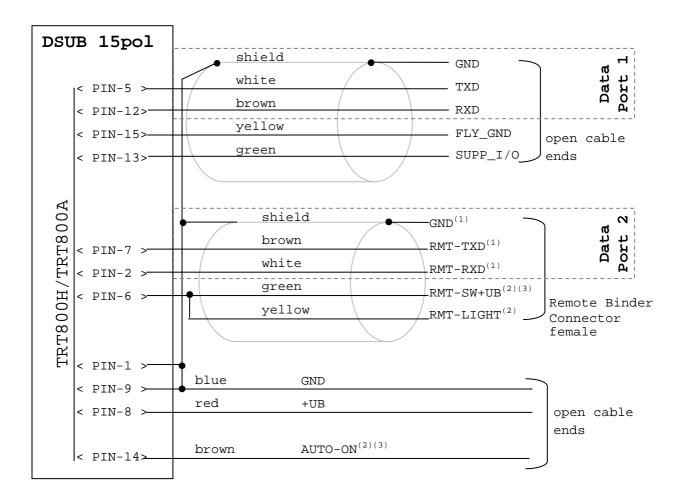


¹ New interface available

 $^{^{\}rm 3}$ port / function not available at TRT800A

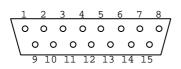
D-SUB Connector female (solder side)

Binder Connector female (solder side)

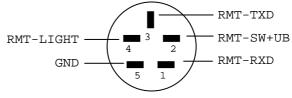

⁻at TRT800H starting from $\ensuremath{\mathrm{S/N}}\xspace\colon$ 30430109 with SW V5.3

⁻at TRT800A starting with SW V5.3

² New TRT800H interface starting from HW 6.0



3.7.3.2 Kabelplan TRT800EMRS (neuere Version mit Interface-Remote) ab S/N 90932114

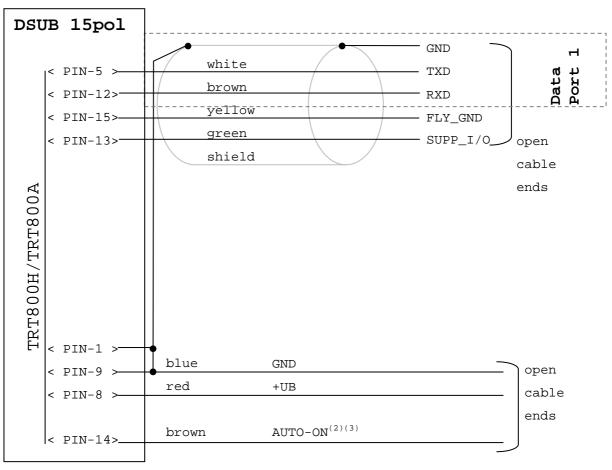


¹ New interface available

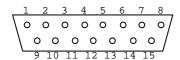
³ port / function not available at TRT800A

D-SUB Connector female (solder side)

Binder Connector female
 (solder side)


⁻at TRT800H starting from S/N: 30430109 with SW V5.3

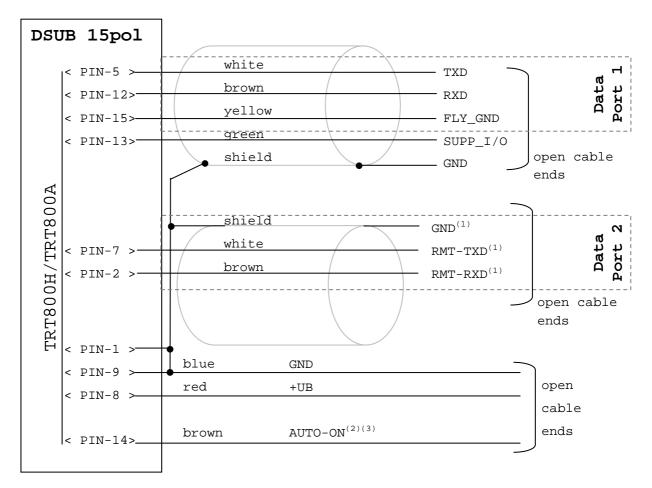
⁻at TRT800A starting with SW V5.3


 $^{^{\}rm 2}$ New TRT800H interface starting from HW 6.0

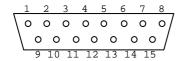
3.7.3.3 Kabelplan TRT800EMSS (neuere Version ohne Interface-Remote) ab S/N 91032115

 $^{^{2}}$ New TRT800H interface starting from HW 6.0 3 port / function not available at TRT800A

D-SUB Connector female (solder side)



Der External-Memory-Adressadapter TRT800EMxx enthält elektronische Komponenten und darf <u>nicht</u> geöffnet werden. Jedwedes Öffnen oder Verändern des Steckers führt zum Verlust der Zulassung!


3.7.3.4 Kabel Plan TRT800EMDS (Version mit beiden Data Ports)

ab S/N 91351121

¹ New interface available

³ port / function not available at TRT800A

D-SUB Connector female (solder side)

Der External-Memory-Adressadapter TRT800EMxx enthält elektronische Komponenten und darf <u>nicht</u> geöffnet werden. Jedwedes Öffnen oder Verändern des Steckers führt zum Verlust der Zulassung!

⁻at TRT800H starting from S/N: 30430109 with SW V5.3

⁻at TRT800A starting with SW V5.3

New TRT800H interface starting from HW 6.0

3.8 Antenne

3.8.1 Antennenauswahl

- Empfohlene Antennen: siehe Kapitel 3.11 Zubehör
- Die Antenne muss für das Luftfahrzeug und den vorgesehenen Einbauort geeignet sein.
- Die spezifizierten Eigenschaften sind abhängig vom ordnungsgemäßen Einbau.
- Das Strahlungsdiagramm muss für den jeweiligen Flugzeugtyp und Einbauort speziell überprüft werden.
- Beeinflussungen zwischen der Antenne und anderen Teilen der Ausrüstung müssen vermieden werden.
- Es dürfen nur zugelassene Antennen eingebaut werden.

3.8.2 Einbauempfehlungen

- Die Herstellerangaben sind zu beachten.
- Die üblicherweise verwendeten sog. Dipol- oder Schwertantennen benötigen am Antennenfußpunkt zwingend eine hochfrequenztaugliche metallische Massefläche, um die Funkleistung abstrahlen zu können.
- Beim Einbau in Luftfahrzeugen aus Verbundwerkstoffen müssen möglichst große solide metallische Ground-Planes (absolutes Minimum 10 cm x 10 cm) verwendet werden. Informationen dazu sind beim Flugzeughersteller erhältlich.
- Der Abstand zu allen anderen Antennen muss <u>mindestens</u> 1 m betragen.
- Schiffchen-Antennen müssen senkrecht an der Rumpfunterseite in Flugrichtung eingebaut werden.

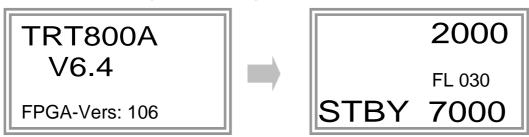
3.8.3 Antennenleitung

- geeignete Antennenkabel: siehe Kapitel 3.11 Zubehör
- möglichst kurze Leitungen verwenden
- Der kleinste Antennenleitungsbiegeradius beträgt 10 cm. Knicke sind nicht zulässig.
- Abstand zu ADF-Antennenleitungen mindestens 30 cm
- Die Antennenleitung muss vor Feuchtigkeit geschützt sein.

Die Dämpfung zwischen Antenne und Transponder darf bei 1090 MHz 1,5 dB nicht überschreiten!

3.9 Überprüfung nach dem Einbau

Ein zugelassener Luftfahrtbetrieb muss die korrekte Funktion des Transponders gemäß "Appendix F of 14 CFR Part 43 – ATC Transponder Tests and Inspections" prüfen.


Alle Steuerungs- und Kontrollfunktionen des Flugzeugs müssen geprüft werden, um Störungen durch die Verkabelung auszuschließen.

Besonders wichtig ist die Einstellung der richtigen Aircraft-Adresse (siehe Kapitel 4.5.4)

3.10 Inbetriebnahme

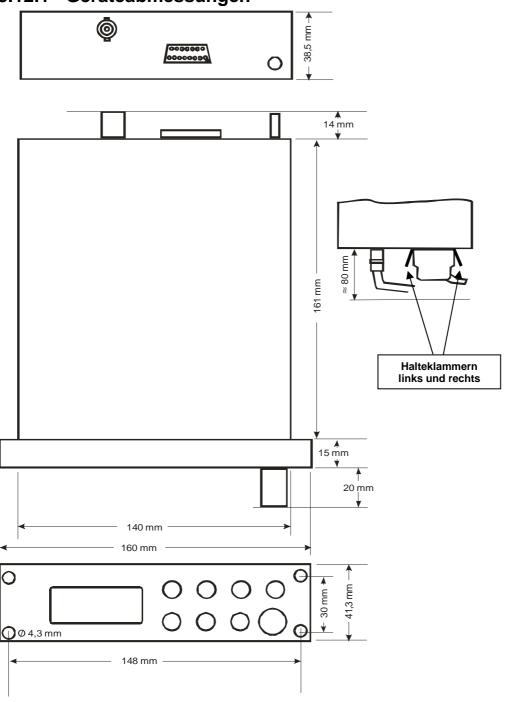
Schalten Sie das Gerät mit der Taste ein.

Es erscheinen folgende Anzeigen (Beispiel):

Das TRT800A startet nach dem Einschalten im Standby-Modus (Anzeige STBY). Betätigen Sie vor dem Start die

Taste , um den Betriebsmodus zu wechseln (Anzeige ACS).

Besonders wichtig ist die korrekte Einstellung der richtigen 24bit - Aircraft-Adresse (siehe Kapitel 4.5.4).

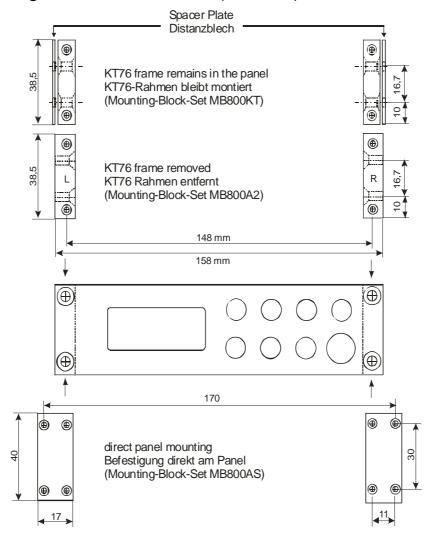

3.11 Zubehör

Artikelnummer	Beschreibung		
TRKABEL1	Antennenkabel 1,0 m (3.2 ft) TNC → BNC		
TRKABEL2	Antennenkabel 2,5 m (8.2 ft) TNC → BNC		
TRKABEL3	Antennenkabel 4,0 m (13.2 ft) TNC → BNC		
TRKABEL4	Antennenkabel 6,5 m (21.3 ft) TNC → BNC		
TRT800EMRS	External-Memory (Aircraft-Address-Adapter) TRT-Anschlusskabel mit Interface_TRT-Remote		
CI-105	Transponder/DME Antenne TSO C66b, C74c CI105 Comant Industries Inc. Höhe: 3,25", Gewicht: 90 g (0.2 lbs)		
AV22	Transponder Stabantenne TSO C74c AV-22 R A Miller Industries		
MB800AS	Mounting-Block-Set für Montage am Panel 2x Mounting-Block, Standard		
MB800KT	Mounting-Block-Set für KT76-Rahmen 2x Mounting-Block 2x Distanzblech		

3.12 Zeichnungen

3.12.1 Geräteabmessungen

Der D-SUB-Anschlußstecker muss beidseitig mit den Halteklammern arretiert werden!



3.12.2 Einbauhinweise

Panelausschnitt: 160 x 42 mm rechteckig, quer ausgerichtet, in Blickund Griffweite des Piloten

Es sind drei Montagemöglichkeiten vorgesehen:

- Befestigung direkt am Instrumentenbrett:
 Teile aus Befestigungs-Set MB800AS verwenden. Die beiden Standard-"Mounting Blocks" wie angegeben montieren.
- Ein KT76-Einbaurahmen wurde entfernt:
 Teile aus Befestigungs-Set MB800A2 (im Lieferumfang)
 verwenden.
 Die beiden mit "R" bzw. "L" markierten Mounting Blocks wie
 angegeben montieren (Markierung "R" bzw. "L" beachten).
- Ein KT76-Einbaurahmen bleibt im Panel montiert: Mounting-Block-Set MB800KT (Zubehör) verwenden.

4 EINSTELLUNGEN

4.1 Überblick

Der TRT800A kann die folgenden Daten speichern:

- ICAO 24-Bit Aircraft-Address (AA)
- Aircraft Category (AC)
- Flight Identification (FID)
- Ground-Switch-Anschluss (Yes/No)
- Geschwindigkeitskategorie (RI)
- Schnittstellenkonfiguration

Alle diese Daten sind im Setup (Kap.4.5.4) konfigurierbar und werden in einem Speicherbaustein im Aircraft-Address Adapter TRT800EM (im Stecker integriert) gespeichert.

Der Stecker muss im Flugzeug verbleiben, wenn der Transponder entfernt oder getauscht wird. Damit ist sichergestellt, dass immer die richtige ICAO 24-Bit Aircraft-Address des Flugzeuges verwendet wird.

Zusätzlich werden folgende Informationen Transponder intern gespeichert:

- Aktiver Squawk
- Passiver Squawk
- VFR Squawk
- Helligkeitseinstellung der Anzeige
- Höhenkalibrierung

4.2 Übersicht der Transponder Einstellungen anzeigen

Die aktuellen Geräte Einstellungen können in Form einer Übersicht ausgelesen werden. Dazu muss im Standby Mode die Taste gedrückt werden bis "SHOW SETUP" am Display angezeigt wird. Die Übersicht gliedert sich in folgende aufeinanderfolgende Seiten:

Bedienung und Einbau

		Anzeige (Beispiel)
Seite 1	Aircraft Address Aircraft Category Flight Identification	AA: FE1234 AC: 19 FID: 44E123 MOD=next
MDD		
Seite 2	Speed Category Ground Switch	Speed Cat: 8 Ground Sw.: YES MOD=next
MDD	Ţ.	
Seite 3	RS-232 Port Einstellungen:	Port1: GPS NMEA-RAIM Port2: REMOTE HEADER MOD=next
MDD	I.	
Seite 4	GPS Protokoll, Baud Rate, Position (wenn verfügbar) ⁽¹⁾ .	GPS: NMEA-RAIM Baud: 9600 Pos.: 48.1 9.9 MOD=next
MDD	Ţ.	
Seite 5	Integrity/ Accuracy Einstellungen	SIL : 0 NAC : 0 MOD=next

		Anzeige (Beispiel)
MDD	\Box	
Seite 5	Höhenkalibrierung (Teil 1)	ALTITUDE CORRECTION 2000 ft: 0ft 10000 ft: + 100ft MOD=next
MDD		
Seite 6	Höhenkalibrierung (Teil 2)	18000 ft: 0ft 25000 ft: + 100ft 35000 ft: - 50ft MOD=Exit

- (1): Positionsinformationen werden nur angezeigt, wenn
 - ein GPS Protokoll ausgewählt ist (NMEA/FREEFLIGHT/.....)
 - ein GPS Empfänger angeschlossen ist und Daten an den TRT800A überträgt (ansonsten wird: "Pos. :no data" angezeigt)
 - eine gültige Position vom GPS Empfänger übertragen wird (bei ungültigen Daten wird "Pos. :wrong data" angezeigt).

Während der Anzeige der Übersichtsseiten werden keine neuen Daten von einem GPS Empfänger eingelesen.

4.3 Beschreibung der Grundeinstellungen

4.3.1 ICAO 24-Bit Aircraft Address (AA)

Informationen zur Vergabe der ICAO 24-Bit Aircraft Address sind bei den nationalen Luftfahrtbehörden erhältlich (in Deutschland: LBA, Referat B5, Abteilung "Verkehrszulassung") bzw. für Luftsportgeräte bei den zuständigen Verbänden. → Kontakt siehe Anhang 5.3 Adressen

Bedienung und Einbau

Damit die Datensicherheit der Luftverkehrsüberwachung nicht gefährdet wird, darf nur die zugewiesene AA verwendet werden.

Wenn keine AA gespeichert ist, erscheint nach dem Einschalten "CRADLE OFF" und der Transponder arbeitet nur im A/C-Mode. (Einstellung der AA: siehe Kap.4.5.4)

4.3.2 Flugzeugkategorien (AC)

Code	Beschreibung	Code	Beschreibung
11	Rettungsbodenfahrzeug	1C	Ultra-Leicht / Drachenflieger
12	Servicebodenfahrzeug	1E	Drohne
19	Segelflugzeug	21	Flugzeug (D-Exxx)< 15.500 lbs, Motorsegler (D-Kxxx)
1A	Ballon & Luftschiff	22	Flugzeug ≥ 15.500 lbs,< 75.000 lbs
1B	Fallschirmspringer	27	Drehflügler

Es dürfen nur die in der Tabelle aufgeführten Codes verwendet werden.

4.3.3 Flight-ID (FID) Setup→4.5.4

Mode S Daten müssen per Gesetz die FID enthalten, um sicherzustellen, dass der Bezug zwischen Flugplan und Radardaten vorhanden ist.

Die FID muss dem Punkt 7 des ICAO Flugplanes entsprechen. Sie enthält nicht mehr als sieben Zeichen (linksbündig, keine zusätzlichen Nullen, Leerzeichen oder Bindestriche).

Bei Flugzeugen mit Firmenrufzeichen besteht die FID meist aus drei Zeichen für den Flugzeugbetreiber, gefolgt von einem Identifizierungscode, z. B. KLM511, BAW213 oder JTR25.

Wird kein Firmenrufzeichen oder kein Flugplan verwendet, entspricht die FID der Registriernummer des Flugzeugs, z. B. DKABC oder DEABC, ohne Bindestriche und Leerzeichen oder zusätzlich Nullen. Die letzten drei Stellen sind auf "blank" (Leerzeichen) zu setzen.

Der TRT800A kann zwar im Hinblick auf eine spätere Erweiterung 8 Zeichen speichern, der ICAO-Flugplan spezifiziert jedoch nur 7 Zeichen, weshalb derzeit auch nur 7 Zeichen verwendet werden dürfen.

35

4.3.4 Geschwindigkeitskategorie (RI)

Setup→*4.5.4*

Ein weiterer notwendiger Bestandteil der Mode-S Daten ist die Angabe zur Geschwindigkeitskategorie des jeweiligen Luftfahrzeuges. Die Geschwindigkeitskategorie muss mit dem jeweiligen Code im Setup eingestellt werden.

Code	Beschreibung
08	Keine Angaben zur Maximalgeschwindigkeit verfügbar
09	Maximalgeschwindigkeit ≤ 75 kt
10	75 kt > Maximalgeschwindigkeit ≤ 150 kt
11	150 kt > Maximalgeschwindigkeit ≤ 300 kt
12	300 kt > Maximalgeschwindigkeit ≤ 600 kt
13	600 kt > Maximalgeschwindigkeit ≤ 1200 kt
14	Maximalgeschwindigkeit > 1200 kt
15	Bisher nicht definiert

4.4 Beschreibung der optionalen Einstellungen

4.4.1 Option: Ground-Switch Setup→4.5.4 Verkabelung→3.7

Ist ein Ground-Switch angeschlossen (und im Setup eingetragen!), kann der Transponder zwischen On-Ground- und In-Flight-Zustand unterscheiden. Im On-Ground-Zustand schaltet der Transponder in den Ground-Modus (Anzeige ,G' im Display).

Mittels eines angeschlossenen Ground-Switches kann der Transponder automatisch am Boden in den Ground-Modus wechseln. Hierzu muss diese Option im Setup aktiviert werden.

Im Ground-Modus antwortet der Transponder auf adressierte Mode S Radarabfragen mit teilweise anderen Daten. Ebenso werden die Senderaten von zyklisch gesendeten Datenformaten (Squitter, ADS-B) zum Teil reduziert. Damit soll die Flugsicherung leichter zwischen fliegenden und rollenden Luftfahrzeugen unterscheiden können. Zudem werden die Funkfrequenzen entlastet.

Für kleinere Flugzeuge wird seitens der Zulassungsvorschriften i.a. kein Ground-Switch gefordert. In diesem Fall werden auch am Boden dieselben Dateninhalte und Datenraten wie in der Luft verwendet.

4.4.2 Data Port Einstellungen

Der Transponder verfügt über zwei RS-232 Data Ports. Abhängig vom Port können folgende Einstellungen ausgewählt werden:

Data Port 1	Data Port 2
GPS FREEFLIGHT	Remote Header
GPS AR-NAV	Remote Test
• GPS NMEA_4800	GPS TM350+NMEA
 GPS NMEA_9600 	• TM350
 GPS TM350+NMEA 	 Disabled
• TM350	
 Disabled 	

Es kann nur eine Transponder GPS Quelle ausgewählt werden.

Die Einstellung von Port 1 kann die vorherige Auswahl des zweiten RS232 Ports überschreiben wenn mehr als eine GPS Quelle ausgewählt wurde.

4.4.2.1 Option : Fernbedienung Setup→4.5.4 Verkabelung→3.7

Der TRT800A kann über einen angeschlossenen Fernbedienungskopf "Remote-Control-Unit TRT800RT" fernbedient werden. Die Schnittstelle ermöglicht die Steuerung aller Einstellungen des Transponders, die während eines Fluges relevant sind.

Die Fernbedienungs-Schnittstelle muss im Transponder Setup aktiviert werden.

Die Schnittstelle darf nur mit einem TRT800RT verbunden und betrieben werden.

Für Prüfungen am Boden kann alternativ die Option "TEST" gewählt werden. Diese aktiviert eine Remote Schnittstelle die zur Konfiguration und Auslesen des Geräte Status verwendet werden kann.

4.4.2.2 Option: Serielle Schnittstelle (RS232)

Setup→4.5.4 Verkabelung→3.7

An die serielle RS232-Schnittstelle können verschiedene GPS-Empfänger angeschlossen werden, um ADS-B Funktionalität zu ermöglichen (Abstrahlung der eigenen Position – kann durch entsprechend ausgerüstete Luftfahrzeuge empfangen und zur Kollisionsvermeidung verwendet werden).

Information zum Anschluss eines externen GPS an den TRT800A für ADS-B Out:

An die serielle RS232-Schnittstelle kann ein GPS Empfänger angeschlossen werden damit der Transponder die eigene Position als ADS-B Nachrichten übermittelt. Voraussetzung hierfür ist eine Sw-Version größer gleich V4.8.

Die serielle Datenleitung des GPS Empfängers wird an RX (Pin 12, braun) und Ground (Pin 1, 9, blau) des 15 poligen D-SUB Steckers angeschlossen. Die Anschlüsse sind normalerweise als offene Enden am Kabelbaum herausgeführt. Der Kabelplan findet sich im Handbuch Kapitel 3.7.3.

Die Standardeinstellung für die meisten GPS Empfänger ist NMEA 4800 Baud.

Bei der Verwendung der Protokolle NMEA-RAIM und FREEFLIGHT kann zusätzlich ein statischer Source Integrity Level (SIL) konfiguriert werden.

Die Änderung der Konfigurationsparameter ist im Kapitel 4.5.4 beschrieben.

Wichtiger FAA-Hinweis:

The ADS-B function of this device has not been evaluated during the FAA TSO certification process other than to ensure non-interference. Due to the SW assurance of DAL "D", the ADS-B function cannot be used in the US National Airspace.

Connecting a GPS source will not comply to FAA certification requirements with regard to ADS-B.

Folgende Auswahlmöglichkeiten stehen zur Verfügung:

Auswahl	Beschreibung	Baud Rate
FREEFLIGHT	GPS/WAAS Sensor 1201	19200
	NexNav NNL 3101	
AR-NAV	Bendix King	9600
	KLN 89B, KLN 94: "Standard RS232 Sentence",	
	KMD 150: "Sentence Type 1"	
	Garmin 400 Series: "Sentence Type 1" (mit und ohne Höheninformation)	
NMEA_4800	NMEA-Format, RMC Datensatz wird ausgewertet.	4800
NMEA_9600	NMEA-Format, RMC Datensatz wird ausgewertet.	9600
NMEA_RAIM	NMEA-Format, RMC und RAIM Datensatz werden ausgewertet.	9600
TM350+NMEA	Das TM350 wird als GPS Receiver (NMEA-Format/RMC format) verwendet.	9600

Einstellung des statischen Source Integrity Level (SIL)

Die für die Einstellung des SIL Wertes notwendigen Angaben zu den Fehlerraten müssen den Spezifikationen des angeschlossenen GPS Receivers entnommen werden. Liegen keine bzw. unzureichende Informationen zur Fehlerrate des GPS Receivers vor muss zwingend NULL als SIL Wert gewählt werden.

GPS Protokoll	SIL Wert wählbar	SIL	. Wert
AR-NAV, NMEA_4800, NMEA_9600, TM350+NMEA	Nein	0	Unknown
FREEFLIGHT, NMEA_RAIM	Ja	1	Error rate: Unknown or > 10 ⁻³ per flight hour Error rate: < 10 ⁻³ per flight hour

Wenn der SIL-Wert auf 1 eingestellt wird, so wird in den ADS-B Datensätzen auch der SDA-Wert auf 1 eingestellt. Daher darf der SIL-Wert nur dann auf 1 eingestellt werden, wenn die Voraussetzungen für einen SDA-Wert auf 1 gegeben sind, d.h. wenn die GPS-Quelle mindestens den Design Assurance Level "D" hat.

Einstellung der "Navigation Accuracy Category" (NAC)

Die NAC-Einstellung ist nur möglich, wenn als Protokoll FREEFLIGHT oder NMEA_RAIM eingestellt ist. Dann kann zwischen dem Wert "0" (Unknown Accuracy) oder "AUTO" (NAC gemäß den vom Receiver gemeldeten Werten) gewählt werden.

Für alle anderen Protokolle wird NAC automatisch auf "0" gesetzt.

GPS Protokoll	NAC Wert wählbar	NAC Einstellung	
AR-NAV, NMEA_4800, NMEA_9600,	Nein	0	Unknown Accuray
TM350+NMEA			
FREEFLIGHT, NMEA_RAIM	Ja	0	Unknown Accuray
		AUTO	NAC-Wert basierend auf den vom GPS-Receiver gelieferten Werten.

Einstellung des verwendeten GPS-Systems:

1 .. 2 Nachrichten pro 2 s.

4.4.2.3 Weitere Auswahlmöglichkeiten:

Auswahl	Beschreibung	Baud Rate
Comm-A/B- support	Datenformat für spezielle Anforderungen. Über einen zusätzlichen Datenprozessor kann neben dem COMM-A/B-Betrieb gleichzeitig die Positions-Information aus einem Flight-Management-System verarbeitet werden.	38400
TM350	Aktivuert Protokoll zur Datenaustausch mit einem TM350	9600
Disabled	RS232 Schnittstelle deaktiviert	-

4.4.3 Option: Höhenkalibrierung Setup→4.5.5

Der TRT800A verwendet einen internen, temperatur-kompensierten Drucksensor. Dieser wird herstellerseitig über den gesamten geforderten Höhenbereich kalibriert um eine korrekte Höhenermittlung innerhalb der vorgegebenen Toleranzen zu gewährleisten.

In seltenen Fällen kann es allerdings vorkommen, dass die Anzeige des Transponders und die vom Piloten verwendeten Anzeige des Höhenmessers im Cockpit um mehr als ±125ft (Toleranz gemäß ETSO C88a / SAE AS8003) voneinander abweichen. Da beide Geräte getrennt voneinander kalibriert werden, können sich deren gültige Toleranzwerte unter ungünstigen Umständen zu einer relativen Toleranz untereinander addieren, die außerhalb des erlaubten Bereiches von ±125ft liegt.

In diesem Fall kann die Höhenmessung des Transponders so nachjustiert werden, dass die Anzeige des Transponders und die des primären Höhenmessers im Cockpit innerhalb der geforderten ±125ft liegen.

Die Nachjustierung basiert auf fünf Interpolationspunkten, an denen Offset-Werte gewählt werden können. Die Offset-Werte an jedem dieser Punkte sind auf einen Bereich von ±100ft beschränkt.

4.5 Einstellungen durchführen

Die Programmierung der ICAO 24-Bit Luftfahrzeugadresse und der Luftfahrzeugkategorie darf nur von **Fachpersonal** vorgenommen werden!

Eine falsche Luftfahrzeugadresse oder Flight-ID (FID) kann zu erheblichen Problemen mit der Flugsicherung sowie ACAS/TCAS-Systemen führen!

<u>Pilot und Halter</u> sind verantwortlich für korrekt eingestellte Transponderdaten.

4.5.1 Konfigurationsmenüs

Die in den folgenden Kapiteln beschriebenen Konfigurationsmenüs werden durch das Drücken der Taste im Standby Mode und loslassen der Taste bei Anzeige des gewünschten Konfigurationsmenüs erreicht. Die folgenden Konfigurationsmenüs können ausgewählt werden:

Zähler	Anzeige	Funktion
03	FID	FID wird angezeigt
48	CHANGE FID	Zugriff auf FID-Eingabe
913	SHOW SETUP	Zugriff auf Übersicht der Einstellungen (ohne Änderungsmöglichkeit)
2528	ENTER SETUP	Zugriff auf Konfigurationseinstellungen
3134	ALTITUDE CORRECTION	Zugriff auf Einstellungen zur Höhenkorrektur

4.5.2 Struktur der Konfigurationsdaten

Flugzeugbezogene Daten werden in bis zu acht unterschiedlichen Datensätzen (Records) gespeichert (Speicher im Stecker). Jeder dieser Datensätze enthält folgende Einstellungen:

- Aircraft Address (AA, 24bit)
- Aircraft category (AC)
- Flight identification (FID, 6-8 Stellen)
- Ground-Switch Einstellung (Installiert: Yes/No)
- Speed category (RI) des Flugzeugs
- Einstellung der Fernbedienbarkeit (Installiert Yes/No)
- Data Port 1 Konfiguration (z.Bsp. GPS Receiver Protokoll)
- Data Port 2 Konfiguration (z.Bsp. Remote Header / TM350)

Nutzerdaten bzw. geräterelevante Daten (z.B. Squawk code, Helligkeitseinstellung des Displays, Höhenkalibrierung, usw.) werden in einem einzigen Datensatz gespeichert (Transponder intern).

4.5.3 Auswahl/Löschen von Konfigurationsdaten

Es ist mindestens einer der acht möglichen, flugzeugbezogenen Datensätze im Stecker gespeichert.

Ist mehr als eine Konfiguration verfügbar, erscheint nach dem Einschalten ein Auswahlmenü, das die gespeicherten Konfigurationen anhand der Flight ID auflistet.

Angelegte Konfigurationsdatensätze können durch Setzen einer nur aus Nullen bestehenden Flight ID wieder gelöscht werden.

4.5.4 Konfiguration durchführen

Mit werden die einzelnen Menüpunkte abgearbeitet bzw. ohne Änderung übersprungen. Dadurch bleiben die ursprünglichen Einstellungen erhalten. Es wird kein Eintrag gelöscht!

Die Schritte 1-9 ändern zunächst die aktuell verwendete Konfiguration ("Record"), welche beim Start des Transponders geladen wurde, bzw. bei Vorhandensein mehrerer Konfigurationen anhand der jeweiligen Flight-ID (FID) ausgewählt wurde. Schritt 10 ermöglicht dann die Änderung bzw. das Anlegen weiterer Konfigurationen sofern erforderlich.

Ве	dienschritt	Anzeige (Beispiel)
1.	Transponder einschalten	
2.	Betriebsmodus STBY muss ausgewählt sein	2000 FL 030 STBY 7000
3.	drücken und gedrückt halten bis "ENTER SETUP" erscheint	ENTER SETUP 26
4.	Nachdem losgelassen wurde erscheint die erste Konfigurations-Seite, die folgende Daten enthält: • Aircraft Address (AA) • Aircraft Category (AC) • Flight Identification (FID)	AA: EF123456 AC: 18 FID: ABCDEFG MOD=next

Bedienung und Einbau

Bedienschritt	Anzeige (Beispiel)
5bewegt Cursor nach rechts (^)bewegt Cursor nach links (^) Drehschalterändert den Wert	AA: EF123456 AC: 18 FID: ^BCDEFG MOD=next
□ Mod	
6. Aktivierung/Deaktivierung der Ground Switch Option Drehschalter ändert den Wert	R1 GND Switch: Yes/No MOD=next
7. Auswahl der Speed Category Drehschalter ändert den Wert.	R1 Speed Cat.: 08-15 MOD=next
8. Auswahl des Protokolls an der seriellen Schnittstellen Drehschalter ändert den Wert Step 9-11 wird nicht angezeigt wennREMOTE: TM350+NMEA Aktiviert ist	DATA-PORT 1: R1 GPS: NMEA-9600/ MOD=next
MOD	

Bedienschritt	Anzeige (Beispiel)
9. Auswahl des Source Integrity Levels The Drehschalter ändert den Wert Wird nur angezeigt wenn GPS Protokoll NMEA-RAIM oder FREEFLIGHT verwendet wird. In allen anderen Modi ist SIL=0 gesetzt.	SIL: 0/1 MOD=next
10. Auswahl der NAC Einstellung	R1
Drehschalter ändert den Wert Wird nur angezeigt wenn GPS Protokoll NMEA-RAIM oder FREEFLIGHT verwendet wird. In allen anderen Modi ist NAC=0 gesetzt.	NAC: 0/auto MOD=next
11. Aktivierung/Deaktivierung der Fernbedienungsschnittstelle Wenn kein TRT800RT angeschlossen ist, muss hier "No" gewählt werden! Die Einstellung "TEST" ist ausschließlich für Prüfungen am Boden erlaubt	DATA-PORT 2: R1 TM350/REMOTE Header MOD=next
□ MDD	
12. Wenn weitere Datensätze angelegt / geändert werden sollen drücken. Zum Verlassen und Abspeichern der Konfiguration drücken	Records ID=Edit Records MOD=Exit

Bedienschritt	Anzeige (Beispiel)
13. Der Transponder ist nun wieder im Standby Betrieb.	2000 FL 030 STBY 7000
14. Transponder ausschalten	
15. Transponder einschalten. Die geänderten Konfigurationsdaten wurden jetzt eingelesen.	TRT800A V6.4 FPGA-Vers: 106

4.5.5 Einstellung der optionalen Höhenkalibrierung

Beschreibung→4.4.3

Die Einstellung der Höhenkalibrierung darf nur von <u>Fachpersonal</u> vorgenommen werden!

<u>Pilot und Halter</u> sind verantwortlich für korrekt eingestellte Höhen Korrekturwerte.

Diese Einstellung ist **nur in Ausnahmefällen notwendig** (→4.4.3)

Die Nachjustierung basiert auf fünf Interpolationspunkten (2000, 10000, 18000, 25000 und 35000 ft). Der Offset Wert an jedem dieser fünf Punkte kann im Bereich von ±100ft verändert werden (10ft Schritte).

Ein Wert von Oft an jedem dieser Punkte deaktiviert die Nachjustierung (werksseitige Standardeinstellung).

Bedienschritt	Anzeige (Beispiel)
Transponder einschalter	n Î
2. Betriebsmodus STBY mi	2000 FL 030 STBY 7000
3. drücken bis "ALTITU angezeigt wird.	DE OFFSET" ALTITUDE OFFSET 33
4. Nach der Freigabe von erste Offset Wert angez	
5. Drehschalter ände	Altitude: 2000 ft Offset : 0 ft MOD=next
6. (9) der Vorgang wird fü folgenden 4 Höhenwert 10000ft 18000f 25000ft 35000f	e wiederholt t Altitude: 10000 ft Offset : 10 ft
□ M□D	

Bedienschritt	Anzeige (Beispiel)
10. Das Konfigurations-Menü wurde verlassen.	2000 FL 030 STBY 7000
Transponder ausschalten	
11. Nach dem Einschalten des Transponders wurden die neuen Werte übernommen.	TRT800A V6.4 FPGA-Vers: 106

5 ANHANG

5.1 Technische Daten

Zulassung	CS-ETSO-2C112a			
	EASA.21O.268			
Angewandte Vorschriften	CS-ETSO-2C112a			
	EUROCAE ED-73B Class 1 Level 2es			
	EUROCAE ED-26			
	RTCA DO-160D			
	RTCA DO-178B Software-Level D			
Temperaturbereiche				
Betrieb	-20 °C to +55 °C; für 30 min +70°C			
Lagerung	-55 °C to +85 °C			
Höhenbereich	≤ 35 000 ft			
Geschwindigkeitsbereich	≤ 250 kt (TAS)			
Stoßfestigkeit	6 G Betrieb			
	20 G Schockbedingungen			
Environmental Categories	RTCA DO-160D Env.Cat.: [C1Z]CAA[SM]XXXXXXZBAAA[TT]M[B3F3] XXA			
Stromversorgung	13,8 VDC/27,5 VDC (10 VDC 32,2 VDC)			
	0,40 A @ 13,8 VDC (typ.)			
	0,70 A @ 13,8 VDC (max.)			
	0,20 A @ 27,5 VDC (typ.)			
	0,35 A @ 27,5 VDC (max.)			
0: 1	10 W (max)			
Sicherung	externe 2-A-Sicherung			
Befestigung	Einbauausschnitt 160 x 42 mm			
Gewicht	0,8 kg (1.76 lb.)			
Gewicht	0,8 kg (1.76 lb.)			

Empfänger-Empfindlichkeit	HF-Signalpegel, der 90 % Antwortrate erzeugt:			
	A. MTL für ATCRBS und ATCRBS/Mode S All-Call Abfragen: -74 dBm ±3 dB.			
	B. MTL für Mode S Abfragen: -74 dBm ± 3 dB.			
Antwortfrequenz	1090 ± 1 MHz			
Maximale Ausgangsleistung	≥ 21 dBW (126 W) am Antennenfußpunkt (bei einer Kabeldämpfung von max. 1,5 dB			
Squitter (ADS-B)	Übertragung in zufälligen, gleichmäßig verteilten Intervallen im Bereich von 0,8 1,2 Sekunden; selbstständige Überwachung von Dateninhalt und Übertragung			
Mode S Elementary Surveillance				
ICAO 24-bit Aircraft Address (Hex-Code)	Eindeutige Luftfahrzeug-Adresse, die von der zuständigen Luftfahrtbehörde zugeteilt wird			
FID	Flight-ID: Flugnummer oder Flugzeugkennzeichen			
Capability Report	Übermittlung der Transpondereigenschaften und Datenverfügbarkeit			
Flughöhe	bis 35 000 ft in Schritten von 25 ft			
Flight Status	in-flight / on-ground			
Mode S Enhanced Surveillance				
Level 2es	Comm-A / Comm-B: 56/112-Bit-Messages			
	SI-capability			

5.2 Umweltbedingungen

Characteristic DO-160D	Sectio n	Cat.	Condition	
Temperature / Altitude	4.0			
Low ground survival temperature	4.5.1		– 55°C	
Low operating temperature	4.5.1		– 20°C	
High ground survival Temperature	4.5.2	C1	+ 85°C	
High Short-time Operating Temperature	4.5.2		+ 70°C	
High Operating Temperature	4.5.3		+ 55°C	
In-Flight Loss of Cooling	4.5.4	Z	No auxiliary cooling required	
Altitude	4.6.1	C1	35 000 ft	
Temperature Variation	5.0	С	2°C change rate minimum per minute	
Humidity	6.0	Α		
Shock	7.0	A	6 G operational shocks 20 G Crash Safety Test Type R in all 6 directions	
Vibration	8.0	S	Vibration Curve M	
Explosion Proofness	9.0	Χ	No test required	
Water Proofness	10.0	Χ	No test required	
Fluids Susceptibilities	11.0	X	No test required	
Sand and Dust	12.0	Χ	No test required	
Fungus Resistance	13.0	Χ	No test required	
Salt Spray	14.0	Χ	No test required	
Magnetic Effect	15.0	Z	Less than 0,3 m	
Power Input (DC)	16.0	В		
Voltage Spike Conducted	17.0	А		
Audio Frequency Conducted	18.0	Α		

Characteristic DO-160D	Sectio n	Cat.	Condition
Susceptibility			
Induced Signal Susceptibility	19.0	Α	
Radio Frequency Susceptibility	20.0	TT	
Emission of RF Energy	21.0	М	
Lightning Induced Transient Susceptibility	22.0	B3F 3	
Lightning Direct Effects	23.0	Χ	No test required
Icing	24.0	Χ	No test required
Electrostatic Discharge (ESD)	25.0	А	

5.3 Adressen

5.3.1 Antrag für Erteilung der 24-bit Adresse

Informationen zum Antrag für eine 24bit ICAO Adresse finden Sie auf der f.u.n.k.e. AVIONICS Homepage www.funkeavionics.de

oder bei weiteren Fragen rund um die Antragsstellung wenden Sie sich

bitte direkt an: Luftfahrt-Bundesamt, Referat B5

Hermann-Blenk-Str. 26, 38020 Braunschweig

Tel.: 0531-2355-0 / Fax: 0531-2355-765

5.3.2 Antrag auf Frequenzzuteilung

Das Antragsformular kann bei der Bundesnetzagentur http://www.bundesnetzagentur.de bezogen werden und muss bei der zuständigen Außenstelle der Bundesnetzagentur eingereicht werden. Die Adressen der Außenstellen können ebenfalls dem Internetauftritt der Bundesnetzagentur entnommen werden.

Um zum Antragsformular auf Frequenzzuteilung zu gelangen, suchen Sie nach "Frequenzzuteilung" oder "Antrag Flugfunk" im Sachgebiet Telekommunikation. (Stand 2012)

f.u.n.k.e. AVIONICS GmbH

Heinz-Strachowitz-Str. 4 DE-86807 Buchloe Germany

Tel.: +49-8241 80066 0 Fax.: +49-8241 80066 99

E-mail:

service@funkeavionics.de www.funkeavionics.de